Laman

Kamis, 15 September 2011

Logika Matematika


Apakah Logika Itu?
Perhatikan ilustrasi berikut ini!
Anda adalah seorang siswa SMK yang baru saja lulus sekolah dan langsung memulai berwirausaha dengan berdagang, yang sebagian modalnya Anda pinjam dari seorang teman. Anda berjanji, “Bila saya tidak rugi, saya akan melunasi semua utang saya sesegera mungkin”. Keadaan berikut ini, yang manakah Anda dapat dikatakan ingkar janji?
i) Anda tidak rugi dan Anda melunasi utang dengan segera
ii) Anda tidak rugi dan Anda tidak melunasi utang dengan segera
iii) Anda melunasi utang padahal anda rugi
iv) Anda melunasi utang dan Anda tidak rugi
Jelas bahwa tanpa logika, kita sering melakukan kesalahan dalam penarikan kesimpulan.
Dalam kehidupan sehari-hari, sering kali kita di hadapkan pada suatu keadaan yang mengharuskan kita untuk membuat suatu keputusan. Agar keputusan kita itu baik dan benar, maka terlebih dahulu kita harus dapat menarik kesimpulan-kesimpulan dari keadaan yang kita hadapi itu, dan untuk dapat menarik kesimpulan yang tepat diperlukan kemampuan menalar yang baik.
Kemampuan menalar adalah kemampuan untuk menarik kesimpulan yang tepat dari bukti-bukti yang ada dan menurut aturan-aturan tertentu. Lalu apa kaitannya dengan logika?
Logika adalah ilmu untuk berpikir dan menalar dengan benar. Secara bahasa, logika berasal dari kata “logos” (bahasa Yunani), yang artinya kata, ucapan, pikiran. Kemudian pengertian itu berkembang menjadi ilmu pengetahuan. Logika dalam pengertian ini adalah berkaitan dengan argumen-argumen, yang mempelajari metode-metode dan prinsip-prinsip untuk ,menunjukkan keabsahan (sah atau tidaknya) suatu argumen, khususnya yang dikembangkan melalui penggunaan metode-metode matematika dan simbol-simbol matematika dengan tujuan untuk menghindari makna ganda dari bahasa yang biasa kita gunakan sehari-hari.
Pengertian Pernyataan dan Bukan Pernyataan
Sebelum membahas pernyataan, terlebih dahulu kita bahas pengertian kalimat. Kalimat adalah rangkaian kata yang disusun menurut aturan bahasa yang mengandung arti.
Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut juga preposisi, kalimat deklaratif). Benar diartikan ada kesesuaian antara apa yang dinyatakan dengan keadaan yang sebenarnya.
Perhatikan beberapa contoh berikut!
1. Al-Quran adalah sumber hukum pertama umat Islam
2. 4 + 3 = 8
3. Frodo mencintai 1
4. Asep adalah bilangan ganjil
Contoh nomor 1 bernilai benar, sedangkan contoh nomor 2 bernilai salah, dan keduanya adalah pernyataan. Sementara contoh nomor 3 dan 4 adalah kalimat yang tidak mempunyai arti.
Sekarang perhatikan contoh di bawah ini!
1. Rapikan tempat tidurmu!
2. Apakah hari ini akan hujan?
3. Indah benar lukisan ini!
4. Berapa orang yang datang?
Kalimat di atas tidak mempunyai nilai benar atau salah, sehingga bukan pernyataan.
Catatan:
Suatu pernyataan biasa kita simbolkan dengan huruf kecil p,q,r,s, dan sebagainya.
Kalimat Terbuka
Perhatikan contoh berikut ini!
1. yang duduk di bawah pohon itu cantik rupanya
2. seseorang memakai kacamata
3. 2x + 8y > 0
4. x + 2 = 8
Keempat contoh di atas belum tentu bernilai benar atau salah. Kalimat yang demikian itu dinamakan kalimat terbuka. Kalimat terbuka biasanya ditandai dengan adanya variabel (peubah). Jika variabelnya diganti dengan konstanta dalam semesta yang sesuai maka kalimat itu akan menjadi sebuah pernyataan.
Variabel (Peubah) adalah lambang yang menunjukkan anggota yang belum tentu dalam semesta pembicaraan, sedangkan konstanta adalah lambang yang menunjukkan anggota tertentu dalam semesta pembicaraan.
Pengganti variabel yang menyebabkan kalimat terbuka menjadi pernyataan yang bernilai benar, disebut selesaian atau penyelesaian.
Contoh:
x + 2 = 8
x adalah variabel, 2 dan 8 adalah konstanta, dan x = 6 untuk x anggora bilangan real adalah selesaian.
Secara skematik, hubungan kalimat, pernyataan, dan kalimat terbuka dapat kita rumuskan sebagai berikut:
http://www.matematikamenyenangkan.com/wp-content/uploads/2009/03/logic1.jpg
Pernyataan Majemuk
Logika merupakan sistem matematika artinya memuat unsur-unsur yaitu pernyataan-oernyataan dan operasi-operasi yang didefinisikan. Operasi-operasi yang akan kita temui berupa kata sambung logika (conective logic):
clip_image002[4]: Merupakan lambang operasi untuk negasi
clip_image004[6]: Merupakan lambang operasi untuk konjungsi
clip_image006: Merupakan lambang operasi untuk disjungsi
clip_image008: Merupakan lambang operasi untuk implikasi
clip_image010: Merupakan lambang operasi untuk biimplikasi
1) Negasi (Ingkaran) Sebuah Pernyataan
Dari sebuah pernyataan tunggal (atau majemuk), kita bisa membuat sebuah pernyataan baru berupa “ingkaran” dari pernyataan itu. “ingkaran” disebut juga “negasi” atau “penyangkalan”. Ingkaran menggunakan operasi uner (monar) “clip_image002[5]” atau “clip_image012[4]”.
Jika suatu pernyataan p benar, maka negasinya clip_image002[6]p salah, dan jika sebaliknya pernyataan p salah, maka negasinya clip_image002[7]p benar.
Definisi tersebut dinyatakan dalam tabel sebagai berikut:
http://www.matematikamenyenangkan.com/wp-content/uploads/2009/03/logic21-150x150.jpg
B = benar
S = salah
Perhatikan cara membuat ingkaran dari sebuah pernyataan serta menentukan nilai kebenarannya!
1. p : kayu memuai bila dipanaskan (S)
-p: kayu tidak memuai bila dipanaskan (B)
2. r : 3 bilangan positif (B)
-r : (cara mengingkar seperti ini salah)
3 bilangan negatif
(seharusnya) 3 bukan bilangan positif (S)
2) Pernyataan Majemuk
Pernyatan majemuk adalah pernyataan baru yang dibentuk dengan merantgkaikan pernyataan-pernyataan tunggal dengan kata sambung logika.
Contoh:
clip_image023disebut konjungsi
clip_image025disebut disjungsi
clip_image027disebut Implikasi
clip_image029disebut biimplikasi
3) Konjungsi (clip_image023[1])
Konjungsi dua pernyataan p dan q bernilai benar hanya jika kedua pernyataan komponennya bernilai benar. Dan jika salah satu atau kedua pernyataan komponennya salah, maka konjungsi itu salah.
Dengan tabel kebenaran
http://www.matematikamenyenangkan.com/wp-content/uploads/2009/03/logic44.jpg
Contoh:
1. p : 5 bilangan prima (B)
q : 5 bilangan ganjil (B)
clip_image023[3]: 5 bilangan prima dan ganjil (B)
4) Disjungsi/ Alternasi (clip_image025[1])
Disjungsi dari dua buah pernyataan p dan q bernilai benar asal salah satu atau kedua pernyataan komponennya benar. Dan jika kedua pernyataan komponennya salah, maka konjungsi itu salah. (Disjungsi seperti ini disebut disjungsi inklusif)
Dengan tabel kebenaran
http://www.matematikamenyenangkan.com/wp-content/uploads/2009/03/logic52.jpg

Contoh:
1. p : 1 akar persamaan clip_image039(B)
q : -1 akar persamaan clip_image039[1](B)
clip_image025[3]: 1 atau -1 akar persamaan clip_image039[2](B)
2. p : Bogor di Jawa barat (B)
q : Bogor itu kota propinsi (S)
clip_image025[4]: Bogor di Jawa Barat atau ibu kota propinsi (B)
5) Implikasi/ Kondisional (clip_image027[1])
clip_image027[2]boleh dibaca:
jika p maka q
q hanya jika p
p syarat perlu untuk q
q syarat cukup untuk p
p disebut anteseden atau hipotesis
q disebut konsekuen atau konklusi
Implikasi clip_image027[3]bernilai benar jika konsekuennya bernilai benar atau anteseden dan konsekuen kedua-duanya salah, dan bernilai salah jika antesedennya bernilai benar, sedangkan konsekuennya salah.
Dengan tabel kebenaran
http://www.matematikamenyenangkan.com/wp-content/uploads/2009/03/logic6.jpg

Contoh:
1. Jika 2 x 2 = 4, maka 4 : 2 = 2                                         (B)
(B)                                (B)
2. Jika manusia bersayap , maka kita bisa terbang    (B)
(S)                                                 (S)
6) Biimplikasi atau Bikondisional (clip_image029[1])
clip_image029[2]boleh dibaca:
p jika dan hanya jika q (disingkat “p jhj q”)
jika p maka q, dan jika q maka p
p syarat perlu dan cukup untuk q
q syarat perlu dan cukup untuk p
biimplikasi clip_image029[3]bernilai benar apabila anteseden dan konsekuen kedua-duanya bernilai benar atau kedua-duanya bernilai salah. Jika tidak demikian maka biimplikasi bernilai salah.
Dengan tabel kebenaran
http://www.matematikamenyenangkan.com/wp-content/uploads/2009/03/logic7.jpg

Contoh:
1. 2 x 2 = 4  jika dan hanya jika 4 : 2 = 2        (B)
(B)                                                  (B)
2. 2 x 4 = 8 jika dan hanya jika 8 : 4 = 0         (S)
(B)                                                (S)
Konvers, Invers, dan Kontraposisi
Dari pernyataan berbentuk implikasi dapat kita turunkan pernyataan-pernyataan baru yang disebut invers, konvers, dan kontraposisi.
Implikasi : clip_image002[12]
Inversnya : clip_image004[8]
Konversnya : clip_image006[4]
Kontraposisinya : clip_image008[4]

Tidak ada komentar:

Posting Komentar

Pengikut